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Abstract

We propose an efficient method for computing coupled flow–body dynamics. The time-stepping is implicit, and uses an
iterative method (preconditioned GMRES) to solve the flow–body equations. The preconditioner solves a decoupled ver-
sion of the equations which involves only the inversion of banded matrices, and requires a small number of iterations per
time step. We use the method to probe the instability to horizontal motions of an elliptical body with simple vertical
motions: flapping and rising. In both cases a linear instability to horizontal motion sets in above a critical Reynolds num-
ber, leading to a stable oscillatory state. The pressure forces play a destabilizing role against the stabilizing viscous forces,
with oscillatory time scales set by either external flapping or the intrinsic flow–body coupling. The latter lowers the insta-
bility threshold in Reynolds number.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Many problems of recent interest in biolocomotion involve the dynamics of fully-coupled flow–body sys-
tems [1–4]. When the motion of a fluid–solid boundary is not prescribed, but is instead determined in terms of
the fluid forces on it, traditional methods for computational fluid dynamics face additional stability
constraints.

Here we consider unsteady two-dimensional incompressible fluid flows, described by the Navier–Stokes
equations. Among the many formulations used in numerical schemes, we focus on the finite-difference ‘‘vor-
ticity–stream-function” formulation, one of the most widely-used. Over the past 80 years, most discussions of
this formulation in the literature deal with the appropriate method for imposing the velocity boundary con-
ditions (no-slip and no-penetration) on the vorticity–stream-function system [5]. The discretized boundary
conditions exert a determining influence on both the accuracy and stability of the scheme, and often the for-
mer is decreased to enhance the latter [6]. For explicit schemes, stability requires that the time step be less than
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a constant times the square of the smallest mesh spacing (the CFL condition), times the Reynolds number.
Such schemes have recently been developed to study high-Reynolds-number flows [7] ðRe ¼ 103 � 106Þ, and
used in studies of flapping flight [8]. Typically the time step is 10�6 � 10�4 in these studies, where 1 is the time
scale of external forcing (such as the flapping period of a wing). Thus a large computational expense is
required to compute only a few flapping periods. When the motion of the body is not prescribed as in the
above studies, but coupled to fluid forces, the CFL bound on the time step becomes even more strict, now
involving the cube, not the square, of the smallest mesh spacing. Anderson et al. studied the falling of a plate
coupled to a viscous fluid using an explicit scheme [9]. The dynamical properties of the system were predicted
based on a small number of tumbling periods, but longer runs would have made the results more conclusive.

In such cases the time step required for stability is many orders of magnitude smaller than that required for
high accuracy, and implicit schemes become more attractive. Such schemes involve the solution of a sparse
matrix equation representing the coupled system with derivatives discretized using finite differences. As the
matrix is sparse, iterative methods are generally more efficient than a direct solution, particularly when an
effective preconditioner can be found.

Here we propose an implicit, iterative method for computing flow–body interactions. The amount of work
required for each iteration scales as the number of grid points, which is of the same order as the work required
for one time step of an explicit scheme [7]. Hence the implicit scheme is more efficient than the explicit scheme
when the number of time steps decreases by a larger factor than the number of iterations. In our method, the
number of iterations per time step ranges from 20 to 100, while the size of stable time steps can increase by a
factor of 104 or more, resulting in a decrease in computational time of a factor of more than 100. We give
results of the method for studies of flow–body interactions at moderate Reynolds number ð10–102Þ, which
are useful for understanding the behavior of bodies at the transition from low- to high-Reynolds number fluid
dynamics [10], including the locomotion of small insects [11] and copepods [12]. However, the method is not
inherently limited to this range of Reynolds number.

In Section 2, we give the vorticity–stream-function equations and boundary conditions in an infinite plane,
written in terms of a boundary-fitted elliptic mesh. In Section 3, we give the implicit iterative scheme, which is
designed to be closely approximated by a preconditioner matrix which is easy to solve. We use an operator
splitting to write the unsteady and viscous terms as pentadiagonal matrices. Essential to the rapid convergence
of the iteration is the preconditioner, which approximates the full system of equations by a decoupled block-
matrix system. Hence the equations coupling boundary vorticity to the bulk flow, and to the motion of the
body, are omitted in the preconditioner. Nonetheless, we obtain convergence in a small number of iterations.

In Section 4, we give results for the dynamics of a wing with motion coupled to the ambient flow, over times
of up to 100 flapping periods, and compare these dynamics with those of an untethered bluff body in a steady
flow. Both cases are near the Reynolds number at which instability to transverse oscillations sets in. We pres-
ent a detailed picture of the instability, including the destabilizing role of pressure forces versus the stabilizing
role of viscous forces, and the presence of phase-locking. We also find a transition from regular oscillations to
irregular motions as the Reynolds number increases. In the appendices we present convergence studies and
validations of the current method using benchmark problems.

2. Coupled flow–body equations

We solve the 2-D Navier–Stokes equations for the motion of an incompressible, viscous fluid in the vortic-
ity–stream-function formulation. These are written in terms of the vorticity x, the flow velocity u ¼ u1êx þ u2êy

and the stream function w
ox
ot
þ u � rx ¼ 1

Re
Dx;

Dw ¼ x;

u ¼ r?w ¼ ð�oy ; oxÞw:
We have given the equations in standard nondimensional form using the Reynolds number Re ¼ LU=m with
the characteristic velocity U and distance L defined below for two specific problems. We formulate our method
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for the particular case of the motion of an elliptical body in the infinite plane. Dynamics of elliptical bodies
have been studied often in classical hydrodynamics [13] and in Navier–Stokes simulations [8,14–16]. The latter
use an elliptical mesh which is related to the physical plane coordinates ðx; yÞ by
xþ iy ¼ coshðlþ ihÞ; l 2 ½0;1Þ; h 2 ½0; 2pÞ: ð1Þ

In ðl; hÞ coordinates the Navier–Stokes equations may be written
S
ox
ot
þr?w � rx ¼ 1

Re
Dx; ð2Þ

Dw ¼ Sx; ð3Þ

where now r ¼ ðol; ohÞ, D ¼ oll þ ohh, u ¼ uêl þ vêh, and S ¼ cosh2l� cos2 h. For general coordinate trans-
formations, S is the Jacobian determinant of the transformation.

We consider rigid translational motions of the ellipse with velocity ðV x; V yÞ, and solve the equations in a
body-fixed frame. In this frame, the flow velocity � ð�V x;�V yÞ in the far-field, and is zero on the ellipse.

The boundary conditions for the Navier–Stokes equations (2) and (3) are zero flow velocity on the bound-
ary of the ellipse ðl ¼ l0Þ, and translational flow at infinity. In terms of w these conditions are
w ¼ olw ¼ 0 for l ¼ l0; h 2 ½0; 2pÞ;
w � V x sinh l sin h� V y cosh l cos h; l!1:

ð4Þ
We consider two simple cases of motion: a body flapping with amplitude A and frequency f, for which
V y ¼ 2pfA sinð2pftÞ; t P 0 ð5Þ

and a body rising at speed V, for which
V y ¼ V ; t P 0: ð6Þ

In both cases the horizontal motion is not prescribed, but is instead coupled to the horizontal component of
the fluid forces
m
dV x

dt
¼ F x;fluid ¼ êx �

Z
body

T � nds; ð7Þ
where m is the mass of the body, n is the unit normal vector on the surface of the ellipse, and s is arc length.
Here T is the fluid stress tensor for the Navier–Stokes equation,
T ¼ �pIþ qmðruþru>Þ; ð8Þ

where p is the pressure, I the identity matrix, q the fluid area density and m the kinematic viscosity.

In Eq. (7), we can write the terms involving p and u in terms of x and ox=ol (see Appendix A). Then Eq. (7)
becomes
dV x

dt
¼ qm

m� qA0

Z 2p

0

ð�x cosh l0 sin hþ olx sinh l0 sin hÞdh: ð9Þ
For the case of flapping motion (Eq. (5)), we nondimensionalize by x ¼ f ~x, dV x=dt ¼ f 2Ad~vx=d~t. For the ris-
ing motion, we nondimensionalize using x ¼ ðV =LÞ~x, dV x=dt ¼ ðV 2=LÞd~vx=d~t. Inserting the nondimensional
quantities and then dropping the tildes, Eq. (9) becomes
dV x

dt
¼ 1

M � Re

Z 2p

0

ð�x sin h=2þ olx tanh l0 sin h=2Þdh: ð10Þ
where M ¼ ðm� qA0Þ=qL2 and Re ¼ fAL=m (for flapping), LV =m (for rising). There are two nondimensional
parameters in this equation. The first is M, the body mass minus displaced fluid mass, divided by the fluid
mass which lies approximately within the region swept out by the body in one period of vertical flapping.
The second is the Reynolds number Re which characterizes the balance of viscous and inertial fluid terms
in the Navier–Stokes equation. Two additional parameters are the aspect ratio of the body, tanh l0, and
A=L, the amplitude divided by the chord, which we set to 1/2 for the results shown subsequently.
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The unknowns are the values of x and w on the ðl� hÞ grid and V x. We now describe how the coupled
flow–body equations (2), (3) and (10) and boundary conditions (4) are solved numerically.

3. The numerical method

The main element of our method is the implicit time discretization of the equations and the iterative method
used to solve them. When the vorticity evolution Eq. (2) is discretized explicitly in time, the time step must
satisfy Dt < cReDx2 for stability. Here Dx is the smallest spacing between mesh points and the constant c

has been estimated numerically as 1.5 [17]. To avoid this constraint we use an implicit time discretization.
The earliest implicit algorithms used relaxation methods, for which convergence is difficult to achieve, par-

ticularly for high-order boundary conditions [6]. More recent methods have used Krylov-subspace methods,
though a large number of iterations is often needed for convergence [17]. Here we solve the x� w system
implicitly using the iterative solver GMRES [18] with a block-matrix preconditioner. For the particular pre-
conditioner we use, convergence to 10�12 accuracy is obtained in a reasonable number of iterations— 20–100
depending on the flow parameters and the problem size. The iterative method is described in Section 3.4.

Two other aspects of Eqs. (2) and (3) are important for their numerical solution

1. The advection term in Eq. (2) is nonlinear.
2. On the body, there are two boundary conditions for w and none for x.

The first aspect requires either a nonlinear solver, such as a Newton-type method, or else a quasi-linearization.
We adopt the latter approach. The second aspect may be addressed by formulating the equation solely in term of
w, with a biharmonic operator [19] or with finite elements in a variational formulation [20]. A Newton-type
method has been used to solve the resulting nonlinear system [21]. This approach has been used mainly for steady
problems, due to the large expense of forming and factoring the Jacobian matrix. Also, the discretized biharmonic
operator yields a poorly-conditioned system which typically results in slow convergence. We use the more com-
mon approach of solving the Laplace operators in the two Eqs. (2) and (3) separately. A boundary condition for
the vorticity on the body is then required; we use the well-known ‘‘Briley’s formula”, as described in Section 3.2.

The spatial discretization is a spectral-finite-difference scheme, which uses fourth-order difference stencils.
In practice we find convergence between third and fourth order, which may be due to the discretization of olx,
as described in Section 3.3.

Having outlined the relevant considerations for general finite-difference vorticity–stream-function schemes,
we now describe our scheme.

3.1. Spatial discretization

We solve the problem on a two-dimensional grid: lj ¼ l0 þ ðlB � l0Þj=n, j ¼ 0; . . . ; n; hk ¼ 2pk=m,
k ¼ 0; . . . ;m� 1. Fig. 1 shows the image in the physical plane of a mesh of points equally spaced in l and
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Fig. 1. The body fitted mesh.
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h. Such a mesh provides good resolution near the body, which is important for computing the fluid forces on
the body accurately. The mesh spacing increases with radial distance from the body. Hence it difficult to
resolve significant vorticity far from the body, which can occur when the body travels far from its initial
position.

The contour l = l0 = constant defines an ellipse with aspect ratio tanh l0 2 ½0; 1Þ. We label the values of
the stream function and vorticity computed at each point ðlj; hkÞ as wj;k and xj;k. We perform the l-derivatives
in Eqs. (2) and (3) using fourth-order-accurate finite-difference stencils, which are one-sided for mesh points
near the boundaries. We perform the h-derivatives using Discrete Fourier Transform representations of x and
w for each lj. Differentiation then corresponds to multiplication of the Fourier coefficients [22].

The equations are discretized on the interior l-lines: l ¼ l1; . . . ; ln�1. Near the boundaries, the finite-dif-
ference stencils incorporate the boundary conditions.

3.2. Numerical boundary conditions

There are essentially four boundary conditions imposed in our numerical solution of the system (2) and (3):
the values of w and olw on the body ðl ¼ l0Þ, and the values of w and x on a contour far from the body
ðl ¼ lBÞ.

3.2.1. Boundary conditions on the body

The condition that flow does not penetrate the body is imposed by setting
w0;k ¼ 0; k ¼ 1; . . . ;m: ð11Þ

The proper way to impose the no-slip boundary condition on the body in (4) has received much attention since
Thom’s formula was proposed in the 1930s [23]. The method we use is a fourth-order version known as Bri-
ley’s formula [24]. This converts the no-slip condition into a formula for x on the no-slip boundary, using the
Poisson Eq. (3) discretized at a point at the boundary. The vorticity boundary condition allows one to solve
the system (2),(3) by using boundary data for w and x in finite-difference stencils.

Briley’s formula is
Sx0;k ¼ 6w1;k �
3

2
w2;k þ

2

9
w3;k

� �
=Dl2; k ¼ 1; . . . ;m: ð12Þ
By inserting the exact solution for w into the right side of Eq. (12) and expanding in a Taylor series at the
boundary point, one sees that the formula is apparently only third-order accurate. However, using an asymp-
totic error expansion it has been shown [7] that the error is actually fourth-order, using an argument which
depends upon the cancellation of error terms at the boundary. The intuitive reason is that the vorticity for-
mula is a surrogate for the fourth-order no-slip condition contained in it [25]. Some workers prefer to avoid
vorticity boundary conditions altogether, though E and Liu have shown that they are formally equivalent to
stream-function boundary conditions, and reproduce known solutions for benchmark problems [7] (see
Appendix B).

3.2.2. Boundary conditions in the far field

We impose the far-field conditions on an ellipse l ¼ lB, far from the body. Under diffusion alone the vor-
ticity decays exponentially with radial distance from the ellipse. However, because the mesh, and therefore the
outer boundary, moves with the ellipse, it can eventually enter a region containing vorticity. This occurs when
the ellipse translates from its initial position to the initial position of the outer boundary. We set the outer
boundary distance sufficiently large to avoid this phenomenon, and set the vorticity to zero on the outer
boundary
xn;k ¼ 0; k ¼ 1; . . . ;m: ð13Þ

It is of the order of machine precision ð10�16Þ in all results shown here.

On the outer boundary we set w as
wn;k ¼ �V y cosh lB cos hk þ V x sinh lB sin hk þ c0; k ¼ 1; . . . ;m; ð14Þ
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where c0 is a constant fixed by the circulation C ¼
R

xdA. For purely rectilinear motion (i.e., without rotation),
the circulation is constant in time, or zero for a flow started from rest (see Appendix C). We add the equation
C ¼ 0 ð15Þ

to our system of equations to solve for the unknown c0.

The error in the expression (14) for wn;k may be estimated by considering the exact solution w expressed as a
series in circular harmonics as in Anderson and Reider [26].

The error is Oðe�lBÞ, the size of the largest decaying term in the expansion of w in circular harmonics. Since
wn;k is OðelBÞ, the relative error is Oðe�2lBÞ, which in practice is of the order of 1% for boundary sizes of � 102

body radii. Higher accuracy may be obtained using an implicit correction similar to one given in [26]. The
numerical error due to the outer boundary condition is shown to decay exponentially with lB in Appendix E.4.

3.3. Numerical equations

Having given the discrete form of the boundary conditions, we now give the discretized version of the flow–
body equations (2) and (3). We use implicit time-stepping, and write the system to be well approximated by a
preconditioner which involves solving only banded (diagonal and pentadiagonal) matrices.

Hence each application of the preconditioner has a computational cost which is linear in the number of grid
points. We therefore use a splitting the viscous operator [27], and second-order time-stepping, to leave only
banded matrices on the left-hand side of the discretized evolution Eq. (2). Denoting the current time step
as nþ 1, the discretization of Eq. (2) is
eS�1 L1L2x
nþ1 þ Dt

2
r?½w�n:n�1 � rxnþ1

� �
¼ eS�1 ~Lxn � Dt

2
r?½w�n:n�1 � rxn þ Dxn

� �
; ð16Þ
where the operators are defined by
eS ¼ cosh2l� 1

2
;

L1 ¼ S � Dt
2Re

D2
h;

L2 ¼ I � Dt
2SRe

D2
l;

eL ¼ S þ Dt
2Re
ðD2

h þ D2
lÞ;

D ¼ Dt
2Re

� �2

D2
h

1

S
D2

lð�Þ
� �

:

The discrete operator D2
l is fourth-order, and one-sided near the boundary, using x0;k from Eq. (12). The oper-

ator L1 is written in physical space, as a pentadiagonal matrix acting on a column vector with entry in row
mðj� 1Þ þ k þ 1 equal to xj;k. The operator L2 is also a pentadiagonal matrix, when the x vector is reordered
so that the entry in row ðn� 1Þk þ j is equal to xj;k (as in the Alternating Directions Implicit, or ADI method
[27]).

We obtain the expressions for L1 and L2 from the fact that they are the approximate factors of the diffusive
part of Eq. (2), as in the ADI method. The D operator is needed to cancel the difference between the product of
L1 and L2 and the diffusive part. The nonlinear term is linearized in the lowest-derivative part, and discretized
at the nþ 1=2 time step. The purpose of the eS operator is to weight the equations, and therefore also the resid-
ual which is to be minimized, more strongly near the body, ensuring that errors there are made small by the
iterative method. The operator eS is also h-independent, so that its inverse is a diagonal rather than a dense
matrix in Fourier space and may be inverted rapidly in the preconditioner.

Here ½w�n:n�1 ¼ ð3=2Þwn � ð1=2Þwn�1 is a second-order extrapolation to the nþ 1=2 step. Because two pre-
vious time levels are needed for this extrapolation, the first time step is solved with a Crank–Nicolson discret-
ization, with the nonlinear term treated implicitly. We note the time discretization can easily be made higher
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than second order. The second-order splitting can be limited to the preconditioner, whereas the full equations
can be written at higher order, and still be sufficiently well approximated by the preconditioner not to signif-
icantly increase the iteration count. For the results we present below, the accuracy is more limited by the
fourth-order spatial discretization than by the second-order time discretization. This is shown in Appendix
E, where we give typical errors in computing benchmark quantities described in Section 4.

We note that the viscous term is written implicitly, and the nonlinear term is written implicitly in the high-
est-derivative part. The extrapolation in the second-order term could be expected to cause an instability for
large time steps, but we find no noticeable instability for all choices of Re and Dt < 0:02, where t ¼ 1 is
one flapping period (see Eq. (5)). For all of the results presented in this work, Dt ¼ 0:005 is sufficient for
1% accuracy. (see Appendix E.3). The system may also be solved with a fully-implicit nonlinear term, but
the inclusion of this nonlinearity increases the number of iterations required for convergence by 40–100%.

The Poisson Eq. (3) is discretized as
eS�1 ðD2
l þ D2

hÞw
nþ1 � Sxnþ1

n o
¼ 0: ð17Þ
The horizontal momentum Eq. (10) is discretized as a second-order Backward Differentiation scheme
ð3=2ÞV nþ1
x � 2V n

x þ ð1=2ÞV n�1
x ¼ DtF nþ1

x;fluid: ð18Þ
The integral in F nþ1
x;fluid is discretized with the trapezoidal rule. To compute olx, we use the fourth-order one-

sided stencil
olx0;k � ðð�25=12Þx0;k þ 4x1;k � 3x2;k þ ð4=3Þx3;k � ð1=4Þx4;kÞ=Dl: ð19Þ

In the asymptotic error expansion for Sx0;k in [7], the leading-order error term is OðDl4Þ, but it is not of the
form Co

6w=ol6ðl0ÞDl4, which is the form of the leading-order error terms in Sxj;k; j ¼ 1 . . . 4. Hence the sten-
cil (19) is only third-order accurate in general. In our convergence studies we find that this error is between
third- and fourth-order (see Appendix E). However, Pan and Chew have shown that the olx-term may be
eliminated in favor of an integral term which involves only x and an auxiliary function over the flow field
(see [28]); this incurs some additional computational expense and we do not use this method here.

Conservation of circulation (Eq. (15)) is written
Xn

j¼0

Xm�1

k¼0

ajSxnþ1
j;k DlDh ¼ 0; ð20Þ
where the weights aj correspond to Simpson’s rule for the l index, and the trapezoidal rule in the h index
(which converges exponentially for analytic periodic functions, by the Euler–Maclaurin summation formula).

The full system of discretized equations consists of Eqs. (16)–(18), and (20), together with boundary con-
ditions in Eqs. (11)–(14). The system may be written as Ax ¼ b, where A is a matrix of order 2mðn� 1Þ þ 2
multiplying the vector x ¼ ðxj;k;wj;k; V x; c0ÞT, j ¼ 1 . . . n� 1; k ¼ 1; . . . ;m. The right hand side vector b consists
of the part of the boundary conditions which are known at each time step–the term in the outer boundary
value of w (Eq.(14)) containing V y (prescribed), and the values of w on the body (Eq. (11)) and x in the
far field (Eq. (13)). All other terms in the equations and boundary conditions, including the flow–body cou-
pling, appear in Ax.

The system is solved using GMRES [18], which requires only the multiplication of a vector by the matrix cor-
responding to the linear system of equations—in other words, the formation of the left-hand sides of Eqs. (16)–
(20)–so the matrix is not formed explicitly. As A is nearly banded, the computational work for each time step thus
scales as the number of variables times the number of iterations needed to achieve convergence in GMRES, so the
key factor in the efficiency of the method is the number of iterations. We now describe the preconditioner which
requires a very small number of iterations, typically 20–100, in a wide range of flow conditions.

3.4. Preconditioning

A preconditioner is needed to make GMRES converge in a small number of iterations for this problem,
because it has a large condition number due to the fourth-order discrete derivatives. A preconditioner replaces
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the full linear system Ax ¼ b by M�1Ax ¼ M�1b, and requires the solution of a linear system Mv ¼ w which is
inexpensive to solve. Application of our preconditioner (i.e., calculation of v ¼ M�1w) consists of two steps.

(1) Given the part of w representing the right side of Eq. (16), the three operators eS�1, L1 and then L2 are
inverted in sequence. L1 is pentadiagonal in Fourier space, and L2 is pentadiagonal, so the work of inver-
sion is linear in the number of variables. The result is ~x, an approximation to x at the current time step.

(2) S ~x is formed by multiplication and added to the part of w representing the right side of Eq. (17). Then w
is obtained as D�1ðS ~xÞ. The discrete Laplacian is inverted in Fourier space, where it is pentadiagonal for
our fourth-order scheme.

Essential to note is that both the inner boundary condition for x (Briley’s formula (12)), and the force bal-
ance equation (Eq. (18)), both of which couple x to w, are ignored in the preconditioner. This allows one to
solve the x and w equations separately using sparse matrix methods. The iterative method of Iliev and Maka-
rov [17] also ignored the vorticity boundary condition in the preconditioner. However, they used a different
discretization of the equations and iterative method, and did not consider coupling between the flow and
the body motion. Our preconditioner also ignores the nonlinear term in Eq. (16), and the equation enforcing
conservation of circulation (Eq. (20)), which are assumed to be subdominant to the viscous term in their con-
tribution to the spectrum of the full linear operator.

3.5. Time-stepping

We list the sequence of steps for a flow starting from rest.

(1) Initialization

t ¼ 0:

Set x0 ¼ 0, w0 ¼ 0, V 0
x ¼ V 0

y ¼ 0.
(2) Time-stepping t ¼ Dt; 2Dt; 3Dt; . . .:

Solve the system of Eqs. (16), (17), (18), and (20), together with boundary conditions in Eqs. (11)–(14) using
GMRES, with the preconditioner described in Section 3.4. Initialize the iteration with a first- or second-order
extrapolation from solutions at previous time steps.

At the first time step t ¼ Dt, make the nonlinear term fully implicit in Eq. (16), and substitute
V 1

x ¼ ðDt=2ÞF 1
x;fluid for Eq. (18) at this time step, retaining second-order accuracy.

We set the criterion for convergence in terms of the relative norm of the residual of the linear system:
jjAx� bjj2=jjbjj2 6 10�12. The number of iterations required at each time step ranges from 20 to 100 depending
on Re, Dt, the ellipse aspect ratio, and the system size. The overall work is significantly less than explicit
schemes, which we explain in the next section. In our method, the number of iterations for convergence
increases by 30–40% when both m and n are doubled. Thus the total work grows approximately as N 1:2 for
N variables, slightly faster than linearly.

3.6. Comparison with explicit schemes

Before presenting results on coupled flow–body dynamics, we compare our scheme with an explicit scheme
in terms of the work involved for a benchmark problem. We consider ellipses of three aspect ratios, which are
nearly neutrally-buoyant ðM ¼ 0:001Þ, and which move vertically as V y ¼ 1� e�ðt=0:02Þ2 . We use a moderate
Reynolds number Re ¼ 5 near the values used in the results section below. The horizontal motion V x is the
same as the vertical motion for the first five time steps, after which it is coupled to the fluid according to New-
ton’s Law (9). For this case, we discretize the equations of motion (2), (3) and (9) explicitly in time, using
Euler’s method. We obtain the values at time step nþ 1 as
Sxnþ1 ¼ Sxn � Dtr?wn � rxn þ Dt
1

Re
Dxn; ð21Þ



Table 1
Comparison of the time intervals computed per unit of computational work by implicit and explicit schemes for a range of aspect ratios,
for the coupled motion of the fluid and a nearly neutrally-buoyant body ðM ¼ 0:001Þ at Re ¼ 5

Ellipse aspect ratio Implicit number of iterations Implicit Dt
2�number of iterations Explicit Dtmax

0.3 38 6:6� 10�5 4:8� 10�7

0.2 54 4:6� 10�5 6:8� 10�7

0.1 80 3:1� 10�5 1:2� 10�6

For three different aspect ratios (left column), the number of iterations needed to solve the discrete equations to 10�12 accuracy in the
implicit scheme is given (second column). The implicit time step used to achieve 1% accuracy ð5� 10�3Þ is divided by twice the number of
iterations to obtain the length of time covered by the implicit scheme for approximately the same amount of work as used in one time step
of the explicit scheme. Hence, for the same amount of computational work, the third column gives the length of time computed by the
implicit scheme, while the fourth gives the length of time computed by the explicit scheme. For higher accuracy of the implicit scheme, a
fourth-order time discretization can be used.
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Dwnþ1 ¼ Sxnþ1; ð22Þ
V nþ1

x ¼ V n
x þ DtF n

x;fluid: ð23Þ
The spatial discretization is unchanged from the implicit method. Different explicit schemes are stable at larger
time steps than the Euler discretization given here, which we use for simplicity. However, the smallest unstable
time step among different explicit schemes will differ by an order-1 constant, independent of the physical
parameters ðRe;MÞ.

The two matrix multiplications dominate the computational cost of each iteration of the implicit scheme,
and each matrix multiplication is nearly equal in cost to one explicit time step. Hence the computational cost
of one iteration of the implicit scheme is approximately twice the cost of one time step of the explicit scheme.
The comparison we make, then, is between the time step of the explicit scheme, and the time step of the impli-
cit scheme divided by the twice the number of iterations per time step.

The numerical parameters are: mð¼ 2p=DhÞ ¼ 96, n ¼ 96, lB ¼ 6, which give approximately 1% accuracy
for a range of aspect ratios > 0.05. In Table 1, we display the largest stable time steps in the explicit scheme,
together with the time step in the implicit scheme divided by twice the number of iterations. We find that, for
the same amount of computational work, the length of time computed by the implicit scheme is between 25
and 140 times that computed by the explicit scheme, depending on the aspect ratio.

For larger Reynolds numbers, we find that the largest stable time step in the explicit scheme is proportional
to the Reynolds number, as is known from previous studies [38,7]. However, the mesh size needed to resolve
the boundary layer must shrink at least as fast as the boundary layer thickness, proportional to Re�1=2. Since
the largest stable time step is also bounded above by the mesh spacing squared due to the diffusive term in Eq.
(2), this factor contributes a term proportional to Re�1 to the time step bound. This factor cancels the overall
Re factor, and consequently the largest stable time step for which the boundary layer is resolved is independent
of Re. In other flow situations with Reynolds number� 1, the convective term may further restrict the largest
stable time step for the explicit scheme.

4. Results

We begin by presenting the numerical solution for a particular case of a flapping body—a thick wing with
density nearly that of the fluid. This solution illustrates some of the generic features we have found over a wide
range of the parameter space. The system is initialized from rest, with a sinusoidal vertical flapping motion as
in Eq. (5), with f ¼ 1. The aspect ratio is 0.3 ðl0 ¼ 0:3Þ, M ¼ 1, and Re ¼ 11. The horizontal velocity V x is
initially zero, and is coupled to the horizontal fluid forces for all time. The Oð10�16Þ round-off error in
built-in trigonometric functions is a source of horizontal asymmetry, as is the sequence of forward and back
substitution used to invert operators in the preconditioner. These errors result in a horizontal asymmetry of
Oð10�12Þ in the flow and in V x after the iterations in the first time step.

In Fig. 2a we show V x versus time, and the corresponding trajectory of the center of mass. We see that the
velocity remains small for the first 25 flapping periods, and then becomes order one, oscillating between �3
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and 3 with a mean value which is slightly displaced from zero due to the startup conditions. The period of
oscillation is very regular: the interpeak intervals are a repeating sequence of three intervals of duration
DT ¼ 4:510	 0:005 followed by one interval of duration DT ¼ 3:980	 0:005; the variation 0.005 is the step
size used in the computation. We note the proximity of these values to half-integer multiples of the flapping
period. A plot of the frequency spectrum shows peaks at the two frequencies of this sequence, and at higher
multiples. As we will show, the same behavior occurs when V x is initialized at Oð1Þ; hence, this horizontally-
oscillating state appears to be an attractor of the system. Fig. 2b shows the corresponding trajectory of the
body center of mass. The trajectory is nearly symmetric about the mean position.

In Fig. 3b we replot the first 40 periods of Fig. 2a on a log scale. The horizontal velocity apparently grows
exponentially, with a linear envelope extending from 	10�12 to order one. The horizontal velocity changes sign
with approximately the same period as in the order-one regime. However, the exponential growth regime is
different in that the velocity reverses sign multiple times in a brief span and then has one sign for a longer
period. Fig. 3a and c show the same situation but with a lower Re ¼ 6:6 and a higher Re ¼ 13. We find no
apparent growth at the smaller Re and exponential growth at a higher rate at the higher Re. We also note that
V x has constant sign at Re ¼ 6:6, which seems to occur whenever there is no growth beyond the initial
Oð10�12Þ asymmetry. However, the constant sign of V x may be positive or negative for different choices of
Re in the no-growth regime and for different initial conditions.

Fig. 4 shows the exponential growth rate plotted for a range of Re at these parameters. There is apparently
a critical Re of 8.3 at which the instability begins.

There are two distinct regimes of body dynamics apparent in Figs. 2a and 3a–c.

(1) The linear instability regime, in which V x 
 1 and grows exponentially.
(2) The ‘‘saturated” regime, in which V x is order one and the body exhibits a quasi-periodic motion.

We now compare these results with those for a simpler system—an ellipse rising at constant speed V instead
of flapping (Eq. (6)), and again free to move horizontally. A similar problem for a rising sphere was studied by
Jenny et al. [29]. For this problem we also find a linear growth regime, which is shown in Fig. 5a. Using
Re ¼ LV =m we find Recr ¼ 23, which is of the same order as the value for flapping, 8.3. Exact agreement is
not expected, since the flapping velocity varies from 0 to 2pfA. Consequently, Recr for flapping could be taken
as large as 2p � 8:3 ¼ 52. We further note that the Recr of 23 for the rising wing with free V x is below the critical
value of 40 we have calculated for the instability to asymmetry of the wake for the same body, but fixed hor-
izontally ðV x ¼ 0Þ. This is the threshold above which we first see exponential growth in F x;fluid. Hence the cou-
pling of body motion can lower the threshold for the generic instability of a wake flow past a fixed body.



Fig. 3. The horizontal velocity versus time, on a log-linear scale, for Re ¼ 6:6 ((a) top), Re ¼ 11 ((b) middle), and Re ¼ 13 ((c) bottom).
For Re ¼ 6:6 there is no discernable growth from the 10�12 level.
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Because Recr for a rising body is similar to that for the flapping body, the collision with previously-shed vor-
tices in flapping probably plays a secondary role in the instability.

We also note that V x in the rising problem has a characteristic frequency which gives a Strouhal number of
St ¼ fL=V ¼ 0:04� 0:08 for Re ¼ 30� 70. Here L is the chord length, f is the frequency of the oscillations,
and V is the rising velocity. This is close to the range of St for the vortex shedding about a fixed circular cyl-
inder at these Re [30]. In previous experimental studies of freely-rising bodies, von Kármán shedding has been
shown to drive the instability of the free body [31,32]. Hence it is plausible that a von Kármán-type instability
is also the driving instability for the flapping wing. However, the frequency of flapping introduces a time scale
which is not present for the freely-rising body, and this accounts for the differing temporal structures between
Figs. 5a and 3.
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In Fig. 5b we show V x in the saturated regime for the free rising problem. We see that the peak values of V x

increase with Re, and correspond to a horizontal amplitude on the order of the body chord, as in the flapping
case (see Fig. 2a.) Similar dynamics were found for a cylinder by Shiels et al. [33]. The period of oscillation of
V x is different from that of the flapping case, again because there is no flapping frequency. The qualitative sim-
ilarity with the flapping case shows that flapping is not necessary to generate large-scale oscillations.

Now we give more detail about the fluid dynamics present during the instability, in terms of the fluid forces
on the body. In Fig. 6 we show the viscous and pressure forces, as well as the horizontal velocity, through the
transition of V x from linear growth to saturation, for rising (a) and flapping (b). We begin with the simpler
rising case. Here Re ¼ LV =m ¼ 52 and M ¼ 1. The linear growth regime has a dominant frequency correspond-
ing to St ¼ 0:10, close the von Kármán frequency at this Re. St increases sharply to 0.14 when the body enters
the saturated regime. The pressure force is slightly ahead of V x in temporal phase. After the peak of V x in each
period, the pressure force changes from thrust to drag, and continues to accelerate the body in the opposite
direction as V x crosses zero and peaks again with opposite sign. The viscous force is almost exactly opposite to
V x in phase, and thus acts as a drag throughout the motion. It is interesting to note that in the saturated
regime, the viscous and pressure forces have essentially the same roles.

The flapping dynamics (Fig. 6b) are shown for Re ¼ 13, M ¼ 1, and are significantly more complicated.
Generally, as for pure rising, the pressure force is slightly ahead of V x in phase, while the viscous force has
the opposite phase. However, both forces change sign on smaller time scales than V x. For the thick wing used
here (aspect ratio 0.3), viscous and pressure forces are of nearly the same magnitude in both regimes. However,



Fig. 6. The horizontal velocity, pressure and viscous forces in the linear growth and saturated regimes, for rising ((a), top) and flapping
((b), bottom). We omit the values between �10�8 and 10�8.Time is in units of L=V and flapping periods, respectively.
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a preliminary study has shown that for a much thinner wing (aspect ratio 0.01), viscous forces are dominant in
the saturated regime, and thus provide both drag and thrust.

In Fig. 7 we show more of the temporal structure of the dynamics in Fig. 6. Plotted are the time intervals
between zero crossings of viscous and pressure forces, marked at the end of the interval. For the rising body,
the transition from the linear growth to saturated regimes may be seen starting at t ¼ 150 in Fig. 6a. In Fig. 7a
we see that in each regime there is essentially a single characteristic time scale for the dynamics. For the flap-
ping body, the analogous plot (Fig. 7b) is more complicated. Here V x saturates at t � 22, but there is a much
longer transition period, 22 K t K 40, before the flow periods reach a quasi-steady state. We again note that
the flapping time scale is apparent, in the proximity of the longer time intervals to multiples of 0.5 throughout
the dynamics.

4.1. The saturated regime

Having discussed the linear instability regime, and the temporal structure of the transition to saturation, we
will now focus on the quasi-periodic dynamics of the system when V x saturates. The parameters are the same
as for Fig. 2 ðRe ¼ 11;M ¼ 1Þ, but this time V x is set to 1� e�ðt=0:2Þ2 for 0 6 t < 0:5, and is then set by fluid
forces for t P 0:5, in order to initiate the saturated regime more quickly. The horizontal velocity is shown
in Fig. 8a, and despite the different initial condition, the dynamics are similar to that in Fig. 2a for t > 27.
In the present case, the first four periods of V x starting at t ¼ 6:2 have duration T ¼ 3:995	 0:005. We see
again that the horizontal motion (and the fluid flow) is periodic at an integer multiple (or in the earlier case
with zero initial V x, a half-integer multiple) of the flapping period. This resembles the ‘‘lock-in” phenomenon
of flow-induced vibration, in which the frequency of vortex shedding changes from the von Kármán frequency
for a static body to coincide to that of the flow–body oscillation [34].
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Because the wing moves back and forth in a manner which is nearly symmetric, it is sufficient to describe the
dynamics over a half-period (duration T ¼ 2). In Fig. 9 we show the flow field at six instants, from t ¼ 6:2 to
t ¼ 8:2. In this span of time (between the dashed vertical lines in Fig. 8a), the wing accelerates leftward, then
decelerates, comes to a stop, and accelerates rightward. In each frame the instantaneous velocity of the wing is
indicated by an arrow on the wing, and the values of the maximum and minimum vorticity on the surface of
the wing are shown. Vorticity contours are logarithmically-spaced, given for decreasing powers of two in mag-
nitude. Values of vorticity on the secondary vortices are also marked.

(1) In the first frame ðt ¼ 6:2Þ, the wing is accelerating leftward. The vorticity is largest on the top side of the
wing. The leftward and rightward components of pressure force are nearly in balance, but there is a sig-
nificant viscous force pulling the wing to the left, from the large region of positive vorticity on the top left
part of the wing.

(2) In the second frame ðt ¼ 6:5Þ, the wing reaches its vertical maximum, and now has a large rightward

acceleration. This is due to a strong rightward pressure force, as the vorticity at the trailing edge is nearly
twice as large as at the leading edge. The intensity of the incipient trailing edge vortex (TEV) may be
attributed to the action of the large negative leading edge vortex (with vorticity contour �18) which
was swept past it between the first two frames.
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(3) The third frame ðt ¼ 7:05Þ shows the wing slightly more than a half-period ahead in time. The same dis-
tribution of forces as in the second frame decelerates the wing: a pressure low at the trailing edge, created
by the large positive TEV from the previous frame. However, the difference in vorticity at the two edges
is not as great as in the second frame, so the deceleration is reduced.

(4) In the fourth frame ðt ¼ 7:5Þ, the wing is nearly stopped (at the top of the stroke and the leftward
extreme in position), and there continues to be a rightward acceleration.

(5) In the fifth frame ðt ¼ 7:7Þ, the moment of maximum rightward acceleration, the vorticity is nearly in
balance yet there is a significant pressure drop at the right end. The acceleration is produced by a nearly
even balance of pressure and viscous forces.

(6) In the sixth frame ðt ¼ 8:2Þ, the wing continues to accelerate rightward by viscous forces on its top sur-
face. The flow is nearly a mirror-image of that in the first frame.
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Fig. 8b shows V x for two values of higher Re (31 and 44) with the same start-up and all other parameters
the same. The instants of vortex shedding can be seen clearly as the local extrema on the plot, spaced a half-
period apart. At these larger Re, the peak values of V x are much larger, and a single shed vortex contains
enough momentum to change the horizontal velocity from its peak value to a velocity of opposite sign. In
the Re ¼ 11 case, more than one shedding incident is required to change the sign of V x (as can be seen in
the distance between the small peaks in Fig. 8a). At these higher Re, the body continually encounters previ-
ously-shed vortices which still have significant strength. It is known that a system of four or more point vor-
tices can exhibit chaotic dynamics [35], so here the previously-shed vortices are expected to contribute to the
irregularity of the dynamics. By contrast, for the Re ¼ 11 case, a calculation of the fluid forces based only on
the instantaneous body velocity may be sufficient to predict the dynamics.

The error in our scheme comes from two sources: the spatial and temporal discretization errors; and the
error in the iterative method, defined by the size of the residual jjAx� bjj2=jjbjj2 when convergence is achieved,
as given in Section 3.3. The spatial errors are found to decay exponentially in Dh and between third and fourth
order in Dl (see Appendix E.1), which is the limiting parameter for accuracy.

In Appendix D we compare the results of our scheme with those in the literature for steady flow past an
oblique ellipse. We find agreement to within 1–2% in force coefficients.

5. Summary and conclusions

We have presented a new implicit numerical method for solving for coupled flow–body dynamics. The
method avoids the time-step constraint for stability associated with explicit schemes, reducing the overall com-
putational time by one to two orders of magnitude. The discrete equations are written to be well approximated
by an efficient preconditioner. The key elements are: (1) an operator splitting, which allows second-order time
accuracy while only banded diagonal matrices need to be inverted in each application of the preconditioner,
(2) a preconditioner which decouples the solution of the vorticity evolution and stream function equations, by
ignoring the vorticity boundary condition and the equation coupling the flow to the body motion, and (3) a
scale factor which gives higher weight to terms near the body surface, where accuracy is most important.

We have applied our method to the coupled flow–body dynamics of a flapping ellipse and a rising ellipse.
We have probed the instabilities to horizontal motion in the regimes of linear growth, and order-1 oscillations,
which develop over long times. We find strong evidence of phase-locking in the horizontal motion of the flap-
ping body, and deduce the destabilizing contribution of pressure and the stabilizing contribution of viscous
forces in the dynamics. The rising body shows a similar oscillatory horizontal motion, which lowers the onset
to horizontal asymmetry of the flow–body system. At higher Re, irregular dynamics are seen, corresponding to
interactions of the body with multiple strong vortices.
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Appendix A. Coupled motion equation

Here we show how to express the integral in Eq. (7) in terms of x and ox=ol. First, we write x and y as
functions of the local orthogonal coordinates n and s, normal and tangential to the body surface, respectively.
Using incompressibility, the definition of vorticity, and u ¼ 0 on the body, we have
ðruþru>Þ � n ¼ xs� osu ¼ xs: ðA:1Þ

Now we express the pressure in terms of the vorticity. In the body frame, the flow velocity evolves according to
q
ou

ot
þ u � ru

� �
¼ �rp þ qmDu� q

dv

dt
: ðA:2Þ
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On the body surface the terms on the left are zero. Taking the tangential component of the remaining terms,
we have
osp ¼ qmonx� qs � dv=dt; or ðA:3Þ

pðsÞ ¼ qm
Z s

0

onxds� qðxðsÞ � xð0ÞÞ � dv=dt; ðA:4Þ
where pð0Þ is set to 0. Multiplying by n and integrating over the body surface gives
I
�pnds ¼ �qm

I
n

Z s

0

onxds
� �

dsþ qA0dv=dt; ðA:5Þ
where A0 ¼ p cosh l0 sinh l0 is the area of the ellipse. Inserting Eqs. (8), (A.1) and (A.5) into Eq. (7), we have
ðm� qA0Þ
dV x

dt
¼ qmêx �

I
xs� n

Z s

0

onxds
� �

ds: ðA:6Þ
Now we change variables to (l, h), using
s ¼ 1ffiffiffi
S
p

� cosh l0 sin h

sinh l0 cos h

� �
; n ¼ 1ffiffiffi

S
p

sinh l0 cos h

cosh l0 sin h

� �
and ðdn; dsÞ ¼
ffiffiffi
S
p
ðdl; dhÞ on the body. Then Eq. (A.6) becomes
dV x

dt
¼ qm

m� qA0

Z 2p

0

ð�x cosh l0 sin hþ olx sinh l0 sin hÞdh: ðA:7Þ
Appendix B. Vorticity boundary condition

Briley’s formula [24] and the second-order version, Thom’s formula [23], give expressions for the vorticity
on the boundary in terms of the stream function on the boundary and in the interior of the domain. The for-
mulae combine the statements of no-slip and no penetration with the statement that vorticity is equal to the
Laplacian of the stream function, evaluated on the boundary.

Beginning in the 1970s, a number of researchers have avoided boundary vorticity formulae such as Briley’s
formula, for two main reasons.

(1) The local vorticity formulae can cause stability problems in explicit schemes, and convergence problems
in implicit schemes [6].

(2) The vorticity boundary condition is not strictly equivalent to the no-slip condition.

Hence these authors [20,36] formulate the no-slip condition in terms of global compatibility conditions on
the vorticity. Derived from Green’s formula, these take the form of integral constraints on the vorticity, one
constraint per boundary node. The historical development of these methods is described by Gresho [37], and
recent implementations are given in [22]. Recently, E and Liu [38] have shown that two of the most commonly
used global conditions are actually equivalent to local vorticity formulae. Theoretical work [39,40] continues
in this area, though local vorticity formulae and global compatibility conditions give similar results for bench-
mark problems such as driven cavity flow [7] and the flow past a flat plate [41].

Appendix C. Setting the far-field constant in the stream function

Let the fluid domain in the lab frame (at rest at infinity) be denoted V ðtÞ. Then by the Transport Theorem
[13],
dC
dt
¼ d

dt

Z
V ðtÞ

xdA ¼
Z

V ðtÞ

Dx
Dt

dA: ðC:1Þ
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By the vorticity Eq. (1) and the Divergence Theorem, this quantity equals
Table
Valida

Angle

20�
40�
60�
80�

Compa
with th

Table
Compa
with m

Re

15
15
30
30
30
30
Z
V ðtÞ

mDxdA ¼ �
Z

BðtÞ
monxdA; ðC:2Þ
where we denote the body by BðtÞ, and assume that x decays like oð1=rÞ in the far field (it decays exponentially
for the flow past a body started from rest). By Eq. (A.3) this quantity becomes
�
Z

BðtÞ

1

q
osp þ s � dv=dt

� �
: ðC:3Þ
The integral of the first term in the integrand vanishes because the pressure is single-valued. The integral of the
second term vanishes for a rectilinear motion. Hence the circulation is constant in time (equal to zero), and we
use this relation to set c0.

Appendix D. Code verification

In this section we compare force coefficients for steady flows past an ellipse computed with the current
scheme with those in the literature. In each comparison our results are converged with respect to refinement
of the grid size and time step.

Dennis and Young [16] computed steady flow solutions past ellipses at moderate Re, inclined at various
angles to the far-field flow. The main differences with our scheme are: (1) far-field boundary conditions which
incorporate an asymptotic expansion for w, and (2) a different coordinate transformation.

In Table 2 we compare results for the lift and drag coefficients for the flow past an elliptical cylinder with
aspect ratio tanhð0:2Þ, inclined at various angles, at Re ¼ 20. We find that our values are consistently within 1–
2% of those in [16], which is the level of accuracy we are able to deduce for their results.

An earlier study by Lugt and Haussling [14] considered the flow past an impulsively started ellipse of aspect
ratio tanhð0:1Þ with major axis inclined at 45� to the direction of motion. The main differences with our
scheme are: (1) explicit time-stepping, (2) ‘‘out-flow” boundary conditions which allow the vorticity to advect
through the downstream part of the computational boundary, and (3) a coarser mesh.

In Table 3, we compare our results for a thinner ellipse, l0 ¼ 0:1, inclined at 45� to the stream, at Re ¼ 15
and 30. with those given in [16] and [14]. The latter work computes the time-dependent flow after an impulsive
2
tion of the code for a simple test case

CL [16] CL (present) CD [16] CD (present)

0.735 0.742 1.295 1.293
0.936 0.932 1.598 1.601
0.698 0.689 1.904 1.903
0.253 0.249 2.084 2.080

rison of the lift coefficient (CL, equal to the lift per unit width out-of-plane divided by qU 2L) and drag coefficient ðCDÞ at Re ¼ 20,
ose presented in [16] for steady flow past an ellipse of aspect ratio tanhð0:2Þ at four angles of attack.

3
rison of code with results from [14] and [16] for CL and CD at Re ¼ 15 and 30, in steady flow past an ellipse of aspect ratio tanhð0:1Þ
ajor axis at 45� to the flow

Work CL CD

Dennis and Young 1.065 1.870
Present 1.051 1.873
Lugt and Haussling ðt ¼ 18Þ 0.955 1.45
Lugt and Haussling ðt ¼ 20:2Þ 0.940 1.44
Dennis and Young 0.941 1.406
Present 0.931 1.411
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start, so we compare with the values at the latest times for which they are listed. Our results are consistently
within 2% of the corresponding values from these works; the different initial conditions may account for this
discrepancy.

Appendix E. Convergence studies

Here we display the results of convergence tests with respect to the four numerical parameters
Dl;Dh;Dt; lB. We show how the main results of Section 4 vary with these parameters. In particular, we con-
sider: (1) the growth rate of the envelopes in Figs. 2 and 3 and (2) the values of the horizontal fluid force F x

and horizontal velocity V x of the body when V x is Oð1Þ.
To compute the growth rate of V x (see for example Fig. 5), we consider the time interval in which

10�12 
 10�8
6 jV xj 6 10�2 
 1, well-separated from the tolerance of the iterative method at Oð10�12Þ, and

from the Oð1Þ regime. Within this time interval, we select a set of shorter time intervals with duration and
starting time chosen from uniform distributions. The purpose is to average over the temporal fluctuations
in the data. For each shorter interval, we compute the slope of the least-squares fit to the data on a log-linear
plot. We then compute the mean ðgÞ and the standard deviation ðrÞ for the slopes of all the intervals in the set.

We focus on a particular base case with Re above Recr. The physical parameters are Re ¼ 11, M ¼ 0:001,
l0 ¼ 0:3, f ¼ 1, A ¼ coshðl0Þ=2. We then vary around a base set of numerical parameters: mð¼ 2p=DhÞ ¼ 96,
n ¼ ðlB � l0Þ=Dl ¼ 96, Dt ¼ 0:005, lB ¼ 6.

E.1. Dl-convergence

At least third-order convergence is expected for quantities involving the pressure force (see Eq. (19). In
Table 4 we see that n ¼ 96 is sufficient to obtain 1% accuracy in g, which is also the level of uncertainty, r=g.

We also consider the effect of n on quantities in the saturated regime. We use a start-up condition that ini-
tiates the saturated regime, similar to that given in Section 4. Here V x ¼ 0:5ð1� e�ðt=0:5Þ2Þ for 0 6 t < 0:5, and
V x is set by fluid forces (see Eq. (10)) for t P 0:5.

In Table 5 we display the relative error in F x at times t ¼ 0:01 and 0.15, and in V x at t ¼ 2, with respect to
reference values computed for n ¼ 1024 (for F x) and n ¼ 256 (for V x). At t ¼ 0:01, the relative error is large,
likely due to the linear increase in V y (and thus discontinuous acceleration) at the start. A smoother increase in
velocity can be used for improved accuracy. At t ¼ 0:15, (when F x is largest), the relative error is much smaller
than at t ¼ 0:01, and remains significantly smaller for the remainder of the computation. The fourth and sixth
columns give the ratio between the error and that for n=2. The values in parenthesis give the values corre-
Table 4
Linear growth rate versus n

n g r=g

72 3.7506e�01 5.3275e�03
96 3.8847e�01 3.1431e�03

128 3.9086e�01 6.1172e�03
144 3.9137e�01 8.0128e�03

Table 5
Dl-convergence in F x and V x

n F xðt ¼ 0:01Þ F xðt ¼ 0:15Þ Ratio V xðt ¼ 2Þ Ratio

64 3.1327e�01 3.1222e�02 – 1.8059e�01 –
96 1.0450e�01 7.9667e�03 – 4.9273e�02 –

128 1.8175e�02 2.8082e�03 11.1 (8–16) 1.6893e�02 10.7 (9–17)
192 1.9098e�02 5.8071e�04 13.7 (8–16) 2.7891e�03 17.6 (13–23)
256 1.6398e�02 1.6499e�04 17.0 (8–16) – –
512 3.0217e�03 2.1736e�05 7.59 (9–17) – –
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sponding to third- and fourth-order convergence, assuming errors of the form cDlk, with the same value of c

for all n. Convergence between third- and fourth-order is found.

E.2. Dh-convergence

Spectral-order convergence is expected (assuming a smooth underlying solution). In Table 6 we see that the
relative error is nearly at the level of the statistical uncertainty r=g for m ¼ 80, and is less than it for m ¼ 96
and above. For the case of the prescribed start-up (Table 7), 64 modes are sufficient for good accuracy at this
Re, due to the spectral convergence.

E.3. Second-order convergence in time step

Second-order convergence is expected (see Eq. (16). In Table 8, the coarsest Dt ¼ 0:01 agrees with the smal-
ler time steps at the level of r=g. For all of the results in this work we use Dt ¼ 0:005. In Tables 9 and 10 we
find second-order convergence in F x at t ¼ 0:5, and in V x for t 2 ½0; 12�.
Table 6
Linear growth rate versus m

m g r=g

80 3.8702e�01 3.0104e�03
96 3.8870e�01 3.6024e�03

112 3.8882e�01 1.0447e�03
128 3.8890e�01 1.7175e�03

Table 9
Dt-convergence in F x. ~F x denotes the value for Dt ¼ 6:25e� 4

Dt supt2½0;0:5�
jF xðtÞ�eF xðtÞj
jeF xðtÞj

Ratio jF xð0:5Þ�eF xð0:5Þj
jeF xð0:5Þj

Ratio

1e�2 1.0673e�01 – 1.0822e�03 –
5e�3 3.3463e�03 32 2.8261e�04 3.8
2.5e�3 1.3812e�03 2.4 6.9613e�05 4.1
1.25e�3 2.8867e�04 4.8 1.4167e�05 4.9

Ratio denotes the ratio of error for Dt with that for 2Dt.

Table 8
Linear growth rate versus Dt

Dt g r=g

1e�2 3.8916e�01 2.3137e�03
5e�3 3.8826e�01 1.9082e�03
2.5e�3 3.8965e�01 3.2117e�03

Table 7
Dh-convergence in F x and V x

m supt2½0;0:5�
jF xðtÞ�F 256

x ðtÞj
jF 256

x ðtÞj
supt2½0;12�

V xðtÞ�V 128
x ðtÞ

jV 128
x ðtÞj

64 1.9286e�09 1.5795e�03

96 1.6221e�11 6.2280e�05
128 1.4592e�11 –



Table 11
Linear growth rate versus lB

R ¼ elB=ðel0 þ e�l0 Þ g r=g

46.4 3.9021e�01 2.0211e�03
95 3.8871e�01 1.8952e�03

193 3.8773e�01 1.9988e�03
393 3.8868e�01 2.6988e�03

Table 12
lB-convergence in V x

R ¼ elB=ðel0 þ e�l0 Þ supt2½0;12� jV xðtÞ�~vxðtÞj
supt2½0;12� j~vxðtÞj

Ratio

46.4 2.6914e�03 –
95 6.4045e�04 4.20 (4.21)

193 1.4775e�04 4.33 (4.32)
393 2.8970e�05 5.10 (5.20)

~vx denotes the value for R ¼ 802.

Table 10
Dt-convergence in V x. ~vx denotes the value for Dt ¼ 1:25e� 3

Dt supt2½0;12� jV xðtÞ�evxðtÞj
supt2½0;12� j~vxðtÞj

Ratio

1e�2 8.6759e�02 –
5e�3 2.0068e�02 4.32
2.5e�3 4.9100e�03 4.09

Ratio denotes the ratio the error for Dt with that for 2Dt.
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E.4. Outer boundary convergence

A relative error of Oðe�2lBÞ is expected in the outer boundary values of w ¼ wB (see Section 3.2.2). In Table
11 we see that a distance of approximately 100 body radii is sufficient for accuracy at the level of the uncer-
tainty, 0.2%. In Table 12 we show the error in V x over 12 flapping periods, for the start-up case. We use as a
reference the solution for R ¼ 802. The relative error in w at the outer boundary is � R�2, from Eq. (14). The
values in the third column give the ratio of the error with that in the row above. The ratio is very close to that
which would be expected for a leading-order error term � R�2, given in parenthesis.
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